What is the difference between a neutrino and an electron neutrino?












1












$begingroup$


So, what is the difference between a neutrino and an electron neutrino? Like how does the term 'electron' made a difference? Also, what is the difference between an antineutrino and an electron antineutrino? I am fine with just answering my main question, but it would be great if you can too answer the next one.



Please keep it simple so that a grade 11 kid, new to nuclear physics would understand. Thank you.










share|cite|improve this question











$endgroup$








  • 3




    $begingroup$
    There are three kinds of neutrinos, and the electron neutrino is one of them. It's the kind of neutrino associated with the electron, e.g. in a weak decay an electron and electron antineutrino could be produced together.
    $endgroup$
    – knzhou
    4 hours ago






  • 2




    $begingroup$
    @knzhou, even a terse answer is an answer rather than a comment.
    $endgroup$
    – Alfred Centauri
    4 hours ago










  • $begingroup$
    @AlfredCentauri That isn't really an answer, more of a statement. It doesn't clarify the difference between a "regular" neutrino and an "electron" neutrino.
    $endgroup$
    – Curious Fish
    3 hours ago






  • 3




    $begingroup$
    @CuriousFish, you might find this meta answer by David Z informative.
    $endgroup$
    – Alfred Centauri
    3 hours ago


















1












$begingroup$


So, what is the difference between a neutrino and an electron neutrino? Like how does the term 'electron' made a difference? Also, what is the difference between an antineutrino and an electron antineutrino? I am fine with just answering my main question, but it would be great if you can too answer the next one.



Please keep it simple so that a grade 11 kid, new to nuclear physics would understand. Thank you.










share|cite|improve this question











$endgroup$








  • 3




    $begingroup$
    There are three kinds of neutrinos, and the electron neutrino is one of them. It's the kind of neutrino associated with the electron, e.g. in a weak decay an electron and electron antineutrino could be produced together.
    $endgroup$
    – knzhou
    4 hours ago






  • 2




    $begingroup$
    @knzhou, even a terse answer is an answer rather than a comment.
    $endgroup$
    – Alfred Centauri
    4 hours ago










  • $begingroup$
    @AlfredCentauri That isn't really an answer, more of a statement. It doesn't clarify the difference between a "regular" neutrino and an "electron" neutrino.
    $endgroup$
    – Curious Fish
    3 hours ago






  • 3




    $begingroup$
    @CuriousFish, you might find this meta answer by David Z informative.
    $endgroup$
    – Alfred Centauri
    3 hours ago
















1












1








1


1



$begingroup$


So, what is the difference between a neutrino and an electron neutrino? Like how does the term 'electron' made a difference? Also, what is the difference between an antineutrino and an electron antineutrino? I am fine with just answering my main question, but it would be great if you can too answer the next one.



Please keep it simple so that a grade 11 kid, new to nuclear physics would understand. Thank you.










share|cite|improve this question











$endgroup$




So, what is the difference between a neutrino and an electron neutrino? Like how does the term 'electron' made a difference? Also, what is the difference between an antineutrino and an electron antineutrino? I am fine with just answering my main question, but it would be great if you can too answer the next one.



Please keep it simple so that a grade 11 kid, new to nuclear physics would understand. Thank you.







particle-physics electrons standard-model definition neutrinos






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 1 hour ago









Qmechanic

103k121851176




103k121851176










asked 4 hours ago









Fred WeasleyFred Weasley

657




657








  • 3




    $begingroup$
    There are three kinds of neutrinos, and the electron neutrino is one of them. It's the kind of neutrino associated with the electron, e.g. in a weak decay an electron and electron antineutrino could be produced together.
    $endgroup$
    – knzhou
    4 hours ago






  • 2




    $begingroup$
    @knzhou, even a terse answer is an answer rather than a comment.
    $endgroup$
    – Alfred Centauri
    4 hours ago










  • $begingroup$
    @AlfredCentauri That isn't really an answer, more of a statement. It doesn't clarify the difference between a "regular" neutrino and an "electron" neutrino.
    $endgroup$
    – Curious Fish
    3 hours ago






  • 3




    $begingroup$
    @CuriousFish, you might find this meta answer by David Z informative.
    $endgroup$
    – Alfred Centauri
    3 hours ago
















  • 3




    $begingroup$
    There are three kinds of neutrinos, and the electron neutrino is one of them. It's the kind of neutrino associated with the electron, e.g. in a weak decay an electron and electron antineutrino could be produced together.
    $endgroup$
    – knzhou
    4 hours ago






  • 2




    $begingroup$
    @knzhou, even a terse answer is an answer rather than a comment.
    $endgroup$
    – Alfred Centauri
    4 hours ago










  • $begingroup$
    @AlfredCentauri That isn't really an answer, more of a statement. It doesn't clarify the difference between a "regular" neutrino and an "electron" neutrino.
    $endgroup$
    – Curious Fish
    3 hours ago






  • 3




    $begingroup$
    @CuriousFish, you might find this meta answer by David Z informative.
    $endgroup$
    – Alfred Centauri
    3 hours ago










3




3




$begingroup$
There are three kinds of neutrinos, and the electron neutrino is one of them. It's the kind of neutrino associated with the electron, e.g. in a weak decay an electron and electron antineutrino could be produced together.
$endgroup$
– knzhou
4 hours ago




$begingroup$
There are three kinds of neutrinos, and the electron neutrino is one of them. It's the kind of neutrino associated with the electron, e.g. in a weak decay an electron and electron antineutrino could be produced together.
$endgroup$
– knzhou
4 hours ago




2




2




$begingroup$
@knzhou, even a terse answer is an answer rather than a comment.
$endgroup$
– Alfred Centauri
4 hours ago




$begingroup$
@knzhou, even a terse answer is an answer rather than a comment.
$endgroup$
– Alfred Centauri
4 hours ago












$begingroup$
@AlfredCentauri That isn't really an answer, more of a statement. It doesn't clarify the difference between a "regular" neutrino and an "electron" neutrino.
$endgroup$
– Curious Fish
3 hours ago




$begingroup$
@AlfredCentauri That isn't really an answer, more of a statement. It doesn't clarify the difference between a "regular" neutrino and an "electron" neutrino.
$endgroup$
– Curious Fish
3 hours ago




3




3




$begingroup$
@CuriousFish, you might find this meta answer by David Z informative.
$endgroup$
– Alfred Centauri
3 hours ago






$begingroup$
@CuriousFish, you might find this meta answer by David Z informative.
$endgroup$
– Alfred Centauri
3 hours ago












2 Answers
2






active

oldest

votes


















3












$begingroup$

As commented by Knzhou, neutrinos come in three different types: electron-, muon-, and tau- neutrinos. Each is paired with the particle it is named for in the sense that it is involved in particle reactions involving only that type of neutrino.



The most common type of neutrino is the electron neutrino, which is often just called a neutrino even though it is technically an electron neutrino.



Each of these different types of neutrino, in turn, has its own antineutrino.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Maybe a brief mention of neutrino oscillation? OTOH, I guess that's a bit complicated...
    $endgroup$
    – PM 2Ring
    2 hours ago










  • $begingroup$
    Yeah, user fred weasley is a beginner, so in my correspondence with him thus far i've been trying to stick to the basics.
    $endgroup$
    – niels nielsen
    1 hour ago






  • 1




    $begingroup$
    Like other quantum systems neutrino have a well established number of states (3 active states with masses below about half the $Z$ mass) but there are multiple physically meaningful ways to select a basis for those states.
    $endgroup$
    – dmckee
    1 hour ago



















1












$begingroup$


Please keep it simple so that a grade 11 kid, new to nuclear physics would understand.




We all were once new to nuclear physics and then to particle physics that evolved from nuclear physics.



Basic rules in physics are classified into conservation laws . Energy is conserved , the sum of all energies is conserved in an isolated system, as well as momentum. It was thought in classical physics that mass was also conserved, but this proved to be wrong at the level of studying the interactions of nuclei , of which all macroscopic masses are composed. This led to the mathematics of special relativity , where particles can decay to lower mass particles.



Conservation of energy and momentum still holds in special relativity, and the decays of particles seen in cosmic and laboratory experiment led to the necessity of defining an electron neutrino, as well as two other neutrinos. Here is how it was proposed and then discovered: energy and momentum would not be conserved in the decay of the neutron to a proton and an electron, it seemed that a neutral particle was taking away energy and momentum. So they defined it as an electron neutrino.



Then other particles were discovered later , like the muon and the tau leptons , also necessitated the existence of a muon neutrino and a tau neutrino. They could not be the same because to explain the the decay of the muon to an electron, one needed two neutral particles, an electron neutrino and a muon neutrino. Thus rose the concept of lepton number conservation, : an electron cannot just disappear, which leads to the world of antiparticles:



For every particle in the particle table, there exists an antiparticle, which has the opposite quantum numbers, for the electron it is the positron.( for the proton ,which is composed out of quarks, the antiproton). The positron has a negative electron number, and when they meet they disappear into two photons. That is the way for lepton numbers to disappear. The anti electron neutrino carries a negative electron lepton number . The antiparticle mathematical world is the same as the particle world with characteristic quantum numbers in the negative, so when particle meets antiparticle they can disappear.



Otherwise and electron cannot disappear, and when created, as in the muon decay, an antielectron neutrino has to appear.



All this is the result of a huge number of experiments which led to the standard model of particle physics, which you may study if you continue into physics in college.






share|cite|improve this answer











$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "151"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: false,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: null,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f456268%2fwhat-is-the-difference-between-a-neutrino-and-an-electron-neutrino%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    3












    $begingroup$

    As commented by Knzhou, neutrinos come in three different types: electron-, muon-, and tau- neutrinos. Each is paired with the particle it is named for in the sense that it is involved in particle reactions involving only that type of neutrino.



    The most common type of neutrino is the electron neutrino, which is often just called a neutrino even though it is technically an electron neutrino.



    Each of these different types of neutrino, in turn, has its own antineutrino.






    share|cite|improve this answer









    $endgroup$













    • $begingroup$
      Maybe a brief mention of neutrino oscillation? OTOH, I guess that's a bit complicated...
      $endgroup$
      – PM 2Ring
      2 hours ago










    • $begingroup$
      Yeah, user fred weasley is a beginner, so in my correspondence with him thus far i've been trying to stick to the basics.
      $endgroup$
      – niels nielsen
      1 hour ago






    • 1




      $begingroup$
      Like other quantum systems neutrino have a well established number of states (3 active states with masses below about half the $Z$ mass) but there are multiple physically meaningful ways to select a basis for those states.
      $endgroup$
      – dmckee
      1 hour ago
















    3












    $begingroup$

    As commented by Knzhou, neutrinos come in three different types: electron-, muon-, and tau- neutrinos. Each is paired with the particle it is named for in the sense that it is involved in particle reactions involving only that type of neutrino.



    The most common type of neutrino is the electron neutrino, which is often just called a neutrino even though it is technically an electron neutrino.



    Each of these different types of neutrino, in turn, has its own antineutrino.






    share|cite|improve this answer









    $endgroup$













    • $begingroup$
      Maybe a brief mention of neutrino oscillation? OTOH, I guess that's a bit complicated...
      $endgroup$
      – PM 2Ring
      2 hours ago










    • $begingroup$
      Yeah, user fred weasley is a beginner, so in my correspondence with him thus far i've been trying to stick to the basics.
      $endgroup$
      – niels nielsen
      1 hour ago






    • 1




      $begingroup$
      Like other quantum systems neutrino have a well established number of states (3 active states with masses below about half the $Z$ mass) but there are multiple physically meaningful ways to select a basis for those states.
      $endgroup$
      – dmckee
      1 hour ago














    3












    3








    3





    $begingroup$

    As commented by Knzhou, neutrinos come in three different types: electron-, muon-, and tau- neutrinos. Each is paired with the particle it is named for in the sense that it is involved in particle reactions involving only that type of neutrino.



    The most common type of neutrino is the electron neutrino, which is often just called a neutrino even though it is technically an electron neutrino.



    Each of these different types of neutrino, in turn, has its own antineutrino.






    share|cite|improve this answer









    $endgroup$



    As commented by Knzhou, neutrinos come in three different types: electron-, muon-, and tau- neutrinos. Each is paired with the particle it is named for in the sense that it is involved in particle reactions involving only that type of neutrino.



    The most common type of neutrino is the electron neutrino, which is often just called a neutrino even though it is technically an electron neutrino.



    Each of these different types of neutrino, in turn, has its own antineutrino.







    share|cite|improve this answer












    share|cite|improve this answer



    share|cite|improve this answer










    answered 3 hours ago









    niels nielsenniels nielsen

    17.5k42756




    17.5k42756












    • $begingroup$
      Maybe a brief mention of neutrino oscillation? OTOH, I guess that's a bit complicated...
      $endgroup$
      – PM 2Ring
      2 hours ago










    • $begingroup$
      Yeah, user fred weasley is a beginner, so in my correspondence with him thus far i've been trying to stick to the basics.
      $endgroup$
      – niels nielsen
      1 hour ago






    • 1




      $begingroup$
      Like other quantum systems neutrino have a well established number of states (3 active states with masses below about half the $Z$ mass) but there are multiple physically meaningful ways to select a basis for those states.
      $endgroup$
      – dmckee
      1 hour ago


















    • $begingroup$
      Maybe a brief mention of neutrino oscillation? OTOH, I guess that's a bit complicated...
      $endgroup$
      – PM 2Ring
      2 hours ago










    • $begingroup$
      Yeah, user fred weasley is a beginner, so in my correspondence with him thus far i've been trying to stick to the basics.
      $endgroup$
      – niels nielsen
      1 hour ago






    • 1




      $begingroup$
      Like other quantum systems neutrino have a well established number of states (3 active states with masses below about half the $Z$ mass) but there are multiple physically meaningful ways to select a basis for those states.
      $endgroup$
      – dmckee
      1 hour ago
















    $begingroup$
    Maybe a brief mention of neutrino oscillation? OTOH, I guess that's a bit complicated...
    $endgroup$
    – PM 2Ring
    2 hours ago




    $begingroup$
    Maybe a brief mention of neutrino oscillation? OTOH, I guess that's a bit complicated...
    $endgroup$
    – PM 2Ring
    2 hours ago












    $begingroup$
    Yeah, user fred weasley is a beginner, so in my correspondence with him thus far i've been trying to stick to the basics.
    $endgroup$
    – niels nielsen
    1 hour ago




    $begingroup$
    Yeah, user fred weasley is a beginner, so in my correspondence with him thus far i've been trying to stick to the basics.
    $endgroup$
    – niels nielsen
    1 hour ago




    1




    1




    $begingroup$
    Like other quantum systems neutrino have a well established number of states (3 active states with masses below about half the $Z$ mass) but there are multiple physically meaningful ways to select a basis for those states.
    $endgroup$
    – dmckee
    1 hour ago




    $begingroup$
    Like other quantum systems neutrino have a well established number of states (3 active states with masses below about half the $Z$ mass) but there are multiple physically meaningful ways to select a basis for those states.
    $endgroup$
    – dmckee
    1 hour ago











    1












    $begingroup$


    Please keep it simple so that a grade 11 kid, new to nuclear physics would understand.




    We all were once new to nuclear physics and then to particle physics that evolved from nuclear physics.



    Basic rules in physics are classified into conservation laws . Energy is conserved , the sum of all energies is conserved in an isolated system, as well as momentum. It was thought in classical physics that mass was also conserved, but this proved to be wrong at the level of studying the interactions of nuclei , of which all macroscopic masses are composed. This led to the mathematics of special relativity , where particles can decay to lower mass particles.



    Conservation of energy and momentum still holds in special relativity, and the decays of particles seen in cosmic and laboratory experiment led to the necessity of defining an electron neutrino, as well as two other neutrinos. Here is how it was proposed and then discovered: energy and momentum would not be conserved in the decay of the neutron to a proton and an electron, it seemed that a neutral particle was taking away energy and momentum. So they defined it as an electron neutrino.



    Then other particles were discovered later , like the muon and the tau leptons , also necessitated the existence of a muon neutrino and a tau neutrino. They could not be the same because to explain the the decay of the muon to an electron, one needed two neutral particles, an electron neutrino and a muon neutrino. Thus rose the concept of lepton number conservation, : an electron cannot just disappear, which leads to the world of antiparticles:



    For every particle in the particle table, there exists an antiparticle, which has the opposite quantum numbers, for the electron it is the positron.( for the proton ,which is composed out of quarks, the antiproton). The positron has a negative electron number, and when they meet they disappear into two photons. That is the way for lepton numbers to disappear. The anti electron neutrino carries a negative electron lepton number . The antiparticle mathematical world is the same as the particle world with characteristic quantum numbers in the negative, so when particle meets antiparticle they can disappear.



    Otherwise and electron cannot disappear, and when created, as in the muon decay, an antielectron neutrino has to appear.



    All this is the result of a huge number of experiments which led to the standard model of particle physics, which you may study if you continue into physics in college.






    share|cite|improve this answer











    $endgroup$


















      1












      $begingroup$


      Please keep it simple so that a grade 11 kid, new to nuclear physics would understand.




      We all were once new to nuclear physics and then to particle physics that evolved from nuclear physics.



      Basic rules in physics are classified into conservation laws . Energy is conserved , the sum of all energies is conserved in an isolated system, as well as momentum. It was thought in classical physics that mass was also conserved, but this proved to be wrong at the level of studying the interactions of nuclei , of which all macroscopic masses are composed. This led to the mathematics of special relativity , where particles can decay to lower mass particles.



      Conservation of energy and momentum still holds in special relativity, and the decays of particles seen in cosmic and laboratory experiment led to the necessity of defining an electron neutrino, as well as two other neutrinos. Here is how it was proposed and then discovered: energy and momentum would not be conserved in the decay of the neutron to a proton and an electron, it seemed that a neutral particle was taking away energy and momentum. So they defined it as an electron neutrino.



      Then other particles were discovered later , like the muon and the tau leptons , also necessitated the existence of a muon neutrino and a tau neutrino. They could not be the same because to explain the the decay of the muon to an electron, one needed two neutral particles, an electron neutrino and a muon neutrino. Thus rose the concept of lepton number conservation, : an electron cannot just disappear, which leads to the world of antiparticles:



      For every particle in the particle table, there exists an antiparticle, which has the opposite quantum numbers, for the electron it is the positron.( for the proton ,which is composed out of quarks, the antiproton). The positron has a negative electron number, and when they meet they disappear into two photons. That is the way for lepton numbers to disappear. The anti electron neutrino carries a negative electron lepton number . The antiparticle mathematical world is the same as the particle world with characteristic quantum numbers in the negative, so when particle meets antiparticle they can disappear.



      Otherwise and electron cannot disappear, and when created, as in the muon decay, an antielectron neutrino has to appear.



      All this is the result of a huge number of experiments which led to the standard model of particle physics, which you may study if you continue into physics in college.






      share|cite|improve this answer











      $endgroup$
















        1












        1








        1





        $begingroup$


        Please keep it simple so that a grade 11 kid, new to nuclear physics would understand.




        We all were once new to nuclear physics and then to particle physics that evolved from nuclear physics.



        Basic rules in physics are classified into conservation laws . Energy is conserved , the sum of all energies is conserved in an isolated system, as well as momentum. It was thought in classical physics that mass was also conserved, but this proved to be wrong at the level of studying the interactions of nuclei , of which all macroscopic masses are composed. This led to the mathematics of special relativity , where particles can decay to lower mass particles.



        Conservation of energy and momentum still holds in special relativity, and the decays of particles seen in cosmic and laboratory experiment led to the necessity of defining an electron neutrino, as well as two other neutrinos. Here is how it was proposed and then discovered: energy and momentum would not be conserved in the decay of the neutron to a proton and an electron, it seemed that a neutral particle was taking away energy and momentum. So they defined it as an electron neutrino.



        Then other particles were discovered later , like the muon and the tau leptons , also necessitated the existence of a muon neutrino and a tau neutrino. They could not be the same because to explain the the decay of the muon to an electron, one needed two neutral particles, an electron neutrino and a muon neutrino. Thus rose the concept of lepton number conservation, : an electron cannot just disappear, which leads to the world of antiparticles:



        For every particle in the particle table, there exists an antiparticle, which has the opposite quantum numbers, for the electron it is the positron.( for the proton ,which is composed out of quarks, the antiproton). The positron has a negative electron number, and when they meet they disappear into two photons. That is the way for lepton numbers to disappear. The anti electron neutrino carries a negative electron lepton number . The antiparticle mathematical world is the same as the particle world with characteristic quantum numbers in the negative, so when particle meets antiparticle they can disappear.



        Otherwise and electron cannot disappear, and when created, as in the muon decay, an antielectron neutrino has to appear.



        All this is the result of a huge number of experiments which led to the standard model of particle physics, which you may study if you continue into physics in college.






        share|cite|improve this answer











        $endgroup$




        Please keep it simple so that a grade 11 kid, new to nuclear physics would understand.




        We all were once new to nuclear physics and then to particle physics that evolved from nuclear physics.



        Basic rules in physics are classified into conservation laws . Energy is conserved , the sum of all energies is conserved in an isolated system, as well as momentum. It was thought in classical physics that mass was also conserved, but this proved to be wrong at the level of studying the interactions of nuclei , of which all macroscopic masses are composed. This led to the mathematics of special relativity , where particles can decay to lower mass particles.



        Conservation of energy and momentum still holds in special relativity, and the decays of particles seen in cosmic and laboratory experiment led to the necessity of defining an electron neutrino, as well as two other neutrinos. Here is how it was proposed and then discovered: energy and momentum would not be conserved in the decay of the neutron to a proton and an electron, it seemed that a neutral particle was taking away energy and momentum. So they defined it as an electron neutrino.



        Then other particles were discovered later , like the muon and the tau leptons , also necessitated the existence of a muon neutrino and a tau neutrino. They could not be the same because to explain the the decay of the muon to an electron, one needed two neutral particles, an electron neutrino and a muon neutrino. Thus rose the concept of lepton number conservation, : an electron cannot just disappear, which leads to the world of antiparticles:



        For every particle in the particle table, there exists an antiparticle, which has the opposite quantum numbers, for the electron it is the positron.( for the proton ,which is composed out of quarks, the antiproton). The positron has a negative electron number, and when they meet they disappear into two photons. That is the way for lepton numbers to disappear. The anti electron neutrino carries a negative electron lepton number . The antiparticle mathematical world is the same as the particle world with characteristic quantum numbers in the negative, so when particle meets antiparticle they can disappear.



        Otherwise and electron cannot disappear, and when created, as in the muon decay, an antielectron neutrino has to appear.



        All this is the result of a huge number of experiments which led to the standard model of particle physics, which you may study if you continue into physics in college.







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited 48 mins ago

























        answered 54 mins ago









        anna vanna v

        157k8149446




        157k8149446






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Physics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f456268%2fwhat-is-the-difference-between-a-neutrino-and-an-electron-neutrino%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            SQL Server 17 - Attemping to backup to remote NAS but Access is denied

            Always On Availability groups resolving state after failover - Remote harden of transaction...

            Restoring from pg_dump with foreign key constraints