مستطيل



































مستطيل

Rectangle example.svg
نوع
رباعي الأضلاع, متوازي أضلاع

أضلاع ورؤوس

4
رمز شليفلي
{}×{}
مخطط كوكستير-دينكين
CDel node 1.pngCDel 2.pngCDel node 1.png
مجموعة التناظر
D2, [2], (*22)
مضلع نظير
معين
خصائص
مُحدب, دائري


Rectangle.png


في الهندسة الأقليدية، المستطيل (بالإنجليزية: Rectangle) هو شكل ثنائي الأبعاد، وهو رباعي أضلاع حيث تكون زواياه الأربعة قائمة. ينبع من هذا أنّ للمستطيل زوجين من الضلعين المتقابلين والمتساويين؛ أي أنّ المستطيل هو حالة خاصة من متوازي أضلاع تكون كل زواياه قائمة.
كما يعتبر المربع حالة خاصة من المستطيل تكون فيها أطوال الأضلاع الأربعة متساوية.[1][2]




محتويات






  • 1 تعريف وخواص


    • 1.1 متى يكون الشكل الرباعي مستطيلاً


    • 1.2 خواص المستطيل




  • 2 مساحة ومحيط المستطيل


  • 3 نظريات متعلقة بالمستطيل


  • 4 انظر أيضاً


  • 5 مراجع


  • 6 وصلات خارجية





تعريف وخواص



متى يكون الشكل الرباعي مستطيلاً


نقول عن شكل رباعي بسيط أنه مستطيل إذا وفقط إذا تحققت أحد الشروط:[3][4]



  • تساوت جميع زواياه.

  • جميع زواياه قائمه.

  • اذ كان طولا قطريه متساويان.

  • المستطيل ABCD و المثلثان الذي نتجا عندما وضعنا قطر :ABD و CDA متطابقان.



خواص المستطيل


يسمى الضلع الأطول في المستطيل الطول، والضلع الأقصر العرض. وتكون مساحة المستطيل حاصل ضرب طوله وعرضه.


إن المستطيل مضلع دائري ويشكل كل قطر في المستطيل قطراً للدائرة المحيطة، وفيه تكون جميع الزوايا قائمة، وكل ضلعين متقابلين متوازيين ومتساويين. لأنّه نوع خاص من متوازي أضلاع، فإنّ أقطار المستطيل متساوية الطول وتنصّف بعضها البعض. بعكس المربع والمعين فإنّ أقطار المستطيل غير متعامدة ولا تنصف زواياه ما لم يكن معيناً.
للمستطيل محورا تناظر، وكل منهما مستقيم يمر من منتصفي ضلعين متقابلين.
لأنّ زوايا المستطيل قائمة، بالإمكان إيجاد طول قطره، c، من عرضه، a، وطوله، b، بواسطة قانون فيثاغورس:


c=a2+b2{displaystyle c={sqrt {a^{2}+b^{2}}}}

في حساب التكامل، قد يستخدم المستطيل أيضًا في حساب تكامل ريمان التقريبي لتكامل دالّة، بواسطة تحويل المساحة الموجودة تحت الرسم البياني للدالة إلى سلسلة من المستطيلات ذات عرض صغير، Δx{displaystyle Delta x}، وطول يساوي معدّل قيمة الدالة في الجوار Δx{displaystyle Delta x}.



مساحة ومحيط المستطيل


محيط المستطيل: جمع جميع اضلاع المستطيل اي جمع طولهم


مساحة المستطيل:الطولْ x العرض



نظريات متعلقة بالمستطيل


منتصفات أضلاع مضلع رباعي قطراه متعامدان تشكل مستطيلاً


يحقق المستطيل كغيره من الرباعيات الدائرية المبرهنة اليابانية في رباعي دائري[5]
، التي تنص على أن مراكز الدوائر الداخلية لمثلثات معينة داخل رباعي دائري تشكل رؤوس مستطيل.


كما يحقق المستطيل مبرهنة العلم البريطاني، باعتبار P نقطة على المستوي المتعلق بالمستطيل ABCD، فإن : [6]BP2+DP2=AP2+CP2{displaystyle BP^{2}+DP^{2}=AP^{2}+CP^{2}} .


كل متوازي أضلاع قطراه متساويان هو مستطيل.



انظر أيضاً



  • متوازي مستطيلات

  • مربع

  • متوازي أضلاع

  • معين

  • مستطيل ذهبي



مراجع




  1. ^ CIMT - Page no longer available at Plymouth University servers نسخة محفوظة 18 مايو 2016 على موقع واي باك مشين.


  2. ^ Definition of Oblong. Mathsisfun.com. Retrieved 2011-11-13. نسخة محفوظة 07 يوليو 2017 على موقع واي باك مشين.


  3. ^ Zalman Usiskin and Jennifer Griffin, "The Classification of Quadrilaterals. A Study of Definition", Information Age Publishing, 2008, pp. 34–36 ISBN 1-59311-695-0.


  4. ^
    Owen Byer؛ Felix Lazebnik؛ Deirdre L. Smeltzer (19 August 2010). Methods for Euclidean Geometry. MAA. صفحات 53–. ISBN 978-0-88385-763-2. اطلع عليه بتاريخ 13 نوفمبر 2011. 



  5. ^ Cyclic Quadrilateral Incentre-Rectangle with interactive animation illustrating a rectangle that becomes a 'crossed rectangle', making a good case for regarding a 'crossed rectangle' as a type of rectangle.


  6. ^ Hall, Leon M., and Robert P. Roe (1998). "An Unexpected Maximum in a Family of Rectangles" (PDF). Mathematics Magazine. 71 (4): 285–291. JSTOR 2690700.  صيانة CS1: أسماء متعددة: قائمة المؤلفون (link)



وصلات خارجية


  • إيريك ويستاين، مستطيل، ماثوورلد Mathworld (باللغة الإنكليزية).



  • أيقونة بوابةبوابة رياضيات


  • أيقونة بوابةبوابة هندسة رياضية










Popular posts from this blog

الفوسفات في المغرب

Four equal circles intersect: What is the area of the small shaded portion and its height

جامعة ليفربول