Fixing conmutation for high voltage switching with power mosfet












1












$begingroup$


and thanks for reading. I have an issue with a charge circuit for a capacitor as load. I want to switch approximately 400 V DC to charge a 1000 uf 600 V capacitor. I'm using a power mosfet for this application. I need it to charge instantly as soon as it turns on, or in a few milliseconds. The problem is that to do that i saturate the mosfet and then turn it off using a 10V signal to Gate source to drive the mosfet, it works the first time, as soon as I send the signal it charges, but the problem is that the capacitor gets damaged and all the terminals get shorted. The mosfet is a IRPF460, it is a 500V, 20 A and 0.27 ohm mosfet, i choose it because it seems to be the correct for this application. I put a 10 A fuse next to the mosfet to verify if it was being damaged by some inrush current but it wasn't because ass soon as I turn on the mosfet the fuse didn't pop and the current i measure was not above 5.5 A, and the mosfet brokedown anyway. THe only think that could be causing the problem is the conmutation therefore, the problem must be in Gate-Source or the driving part. Another think that called my atenttion is that if i apply almost 8 V to Gate-Source the capacitor charges but only to a half of the voltage with a single pulse of a button., and the mosfet does not suffer any damage. The driving signal for the mosfet will be a pulse that can go from 55 ms to 1 sec. so it has to charge the cap within these times too. I looked for snubber circuits that can handle this but the ones i found were parallel to the mosfet and would get 400 V as soon as the power supply is conected, so i would need components to deal with this and i dont have them. Even if i would get them i dont know if it would work. THis circuit will have another part to discharge the capacitor, but first i need the charge to work. I would like to know if i can implement some kind of snubber for Gate-Source or what can i do to avoid damaging the mosfet and switching the voltage needed. I think the mosfet could be leaving the safe operating area (SOA) when switching. I also tried to put a diode with a parallel resistor on gate, but no results. Please I need help. Thank you all, again.



This is my circuit:
enter image description here










share|improve this question







New contributor




M.Brian is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$








  • 1




    $begingroup$
    Did you examine the SOA curve of the FET?
    $endgroup$
    – Sunnyskyguy EE75
    2 hours ago






  • 2




    $begingroup$
    Please edit your post to fix all the typos. And add a link to the datasheet - there’s no such thing as IRPF460.
    $endgroup$
    – Blair Fonville
    1 hour ago










  • $begingroup$
    Charging a capacitor like this will result in half of the charging energy being dissipated within the FET. There will be extremely large currents and energy dissipation that will destroy any reasonable size device. You need to either use an appropriate size series resistor that can handle the energy or better approaches use a series inductor and diode to recover that energy and put it back in the capacitor.
    $endgroup$
    – Kevin White
    1 hour ago


















1












$begingroup$


and thanks for reading. I have an issue with a charge circuit for a capacitor as load. I want to switch approximately 400 V DC to charge a 1000 uf 600 V capacitor. I'm using a power mosfet for this application. I need it to charge instantly as soon as it turns on, or in a few milliseconds. The problem is that to do that i saturate the mosfet and then turn it off using a 10V signal to Gate source to drive the mosfet, it works the first time, as soon as I send the signal it charges, but the problem is that the capacitor gets damaged and all the terminals get shorted. The mosfet is a IRPF460, it is a 500V, 20 A and 0.27 ohm mosfet, i choose it because it seems to be the correct for this application. I put a 10 A fuse next to the mosfet to verify if it was being damaged by some inrush current but it wasn't because ass soon as I turn on the mosfet the fuse didn't pop and the current i measure was not above 5.5 A, and the mosfet brokedown anyway. THe only think that could be causing the problem is the conmutation therefore, the problem must be in Gate-Source or the driving part. Another think that called my atenttion is that if i apply almost 8 V to Gate-Source the capacitor charges but only to a half of the voltage with a single pulse of a button., and the mosfet does not suffer any damage. The driving signal for the mosfet will be a pulse that can go from 55 ms to 1 sec. so it has to charge the cap within these times too. I looked for snubber circuits that can handle this but the ones i found were parallel to the mosfet and would get 400 V as soon as the power supply is conected, so i would need components to deal with this and i dont have them. Even if i would get them i dont know if it would work. THis circuit will have another part to discharge the capacitor, but first i need the charge to work. I would like to know if i can implement some kind of snubber for Gate-Source or what can i do to avoid damaging the mosfet and switching the voltage needed. I think the mosfet could be leaving the safe operating area (SOA) when switching. I also tried to put a diode with a parallel resistor on gate, but no results. Please I need help. Thank you all, again.



This is my circuit:
enter image description here










share|improve this question







New contributor




M.Brian is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$








  • 1




    $begingroup$
    Did you examine the SOA curve of the FET?
    $endgroup$
    – Sunnyskyguy EE75
    2 hours ago






  • 2




    $begingroup$
    Please edit your post to fix all the typos. And add a link to the datasheet - there’s no such thing as IRPF460.
    $endgroup$
    – Blair Fonville
    1 hour ago










  • $begingroup$
    Charging a capacitor like this will result in half of the charging energy being dissipated within the FET. There will be extremely large currents and energy dissipation that will destroy any reasonable size device. You need to either use an appropriate size series resistor that can handle the energy or better approaches use a series inductor and diode to recover that energy and put it back in the capacitor.
    $endgroup$
    – Kevin White
    1 hour ago
















1












1








1





$begingroup$


and thanks for reading. I have an issue with a charge circuit for a capacitor as load. I want to switch approximately 400 V DC to charge a 1000 uf 600 V capacitor. I'm using a power mosfet for this application. I need it to charge instantly as soon as it turns on, or in a few milliseconds. The problem is that to do that i saturate the mosfet and then turn it off using a 10V signal to Gate source to drive the mosfet, it works the first time, as soon as I send the signal it charges, but the problem is that the capacitor gets damaged and all the terminals get shorted. The mosfet is a IRPF460, it is a 500V, 20 A and 0.27 ohm mosfet, i choose it because it seems to be the correct for this application. I put a 10 A fuse next to the mosfet to verify if it was being damaged by some inrush current but it wasn't because ass soon as I turn on the mosfet the fuse didn't pop and the current i measure was not above 5.5 A, and the mosfet brokedown anyway. THe only think that could be causing the problem is the conmutation therefore, the problem must be in Gate-Source or the driving part. Another think that called my atenttion is that if i apply almost 8 V to Gate-Source the capacitor charges but only to a half of the voltage with a single pulse of a button., and the mosfet does not suffer any damage. The driving signal for the mosfet will be a pulse that can go from 55 ms to 1 sec. so it has to charge the cap within these times too. I looked for snubber circuits that can handle this but the ones i found were parallel to the mosfet and would get 400 V as soon as the power supply is conected, so i would need components to deal with this and i dont have them. Even if i would get them i dont know if it would work. THis circuit will have another part to discharge the capacitor, but first i need the charge to work. I would like to know if i can implement some kind of snubber for Gate-Source or what can i do to avoid damaging the mosfet and switching the voltage needed. I think the mosfet could be leaving the safe operating area (SOA) when switching. I also tried to put a diode with a parallel resistor on gate, but no results. Please I need help. Thank you all, again.



This is my circuit:
enter image description here










share|improve this question







New contributor




M.Brian is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$




and thanks for reading. I have an issue with a charge circuit for a capacitor as load. I want to switch approximately 400 V DC to charge a 1000 uf 600 V capacitor. I'm using a power mosfet for this application. I need it to charge instantly as soon as it turns on, or in a few milliseconds. The problem is that to do that i saturate the mosfet and then turn it off using a 10V signal to Gate source to drive the mosfet, it works the first time, as soon as I send the signal it charges, but the problem is that the capacitor gets damaged and all the terminals get shorted. The mosfet is a IRPF460, it is a 500V, 20 A and 0.27 ohm mosfet, i choose it because it seems to be the correct for this application. I put a 10 A fuse next to the mosfet to verify if it was being damaged by some inrush current but it wasn't because ass soon as I turn on the mosfet the fuse didn't pop and the current i measure was not above 5.5 A, and the mosfet brokedown anyway. THe only think that could be causing the problem is the conmutation therefore, the problem must be in Gate-Source or the driving part. Another think that called my atenttion is that if i apply almost 8 V to Gate-Source the capacitor charges but only to a half of the voltage with a single pulse of a button., and the mosfet does not suffer any damage. The driving signal for the mosfet will be a pulse that can go from 55 ms to 1 sec. so it has to charge the cap within these times too. I looked for snubber circuits that can handle this but the ones i found were parallel to the mosfet and would get 400 V as soon as the power supply is conected, so i would need components to deal with this and i dont have them. Even if i would get them i dont know if it would work. THis circuit will have another part to discharge the capacitor, but first i need the charge to work. I would like to know if i can implement some kind of snubber for Gate-Source or what can i do to avoid damaging the mosfet and switching the voltage needed. I think the mosfet could be leaving the safe operating area (SOA) when switching. I also tried to put a diode with a parallel resistor on gate, but no results. Please I need help. Thank you all, again.



This is my circuit:
enter image description here







mosfet switch-mode-power-supply power-electronics switching powermosfet






share|improve this question







New contributor




M.Brian is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|improve this question







New contributor




M.Brian is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|improve this question




share|improve this question






New contributor




M.Brian is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked 2 hours ago









M.BrianM.Brian

62




62




New contributor




M.Brian is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





M.Brian is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






M.Brian is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.








  • 1




    $begingroup$
    Did you examine the SOA curve of the FET?
    $endgroup$
    – Sunnyskyguy EE75
    2 hours ago






  • 2




    $begingroup$
    Please edit your post to fix all the typos. And add a link to the datasheet - there’s no such thing as IRPF460.
    $endgroup$
    – Blair Fonville
    1 hour ago










  • $begingroup$
    Charging a capacitor like this will result in half of the charging energy being dissipated within the FET. There will be extremely large currents and energy dissipation that will destroy any reasonable size device. You need to either use an appropriate size series resistor that can handle the energy or better approaches use a series inductor and diode to recover that energy and put it back in the capacitor.
    $endgroup$
    – Kevin White
    1 hour ago
















  • 1




    $begingroup$
    Did you examine the SOA curve of the FET?
    $endgroup$
    – Sunnyskyguy EE75
    2 hours ago






  • 2




    $begingroup$
    Please edit your post to fix all the typos. And add a link to the datasheet - there’s no such thing as IRPF460.
    $endgroup$
    – Blair Fonville
    1 hour ago










  • $begingroup$
    Charging a capacitor like this will result in half of the charging energy being dissipated within the FET. There will be extremely large currents and energy dissipation that will destroy any reasonable size device. You need to either use an appropriate size series resistor that can handle the energy or better approaches use a series inductor and diode to recover that energy and put it back in the capacitor.
    $endgroup$
    – Kevin White
    1 hour ago










1




1




$begingroup$
Did you examine the SOA curve of the FET?
$endgroup$
– Sunnyskyguy EE75
2 hours ago




$begingroup$
Did you examine the SOA curve of the FET?
$endgroup$
– Sunnyskyguy EE75
2 hours ago




2




2




$begingroup$
Please edit your post to fix all the typos. And add a link to the datasheet - there’s no such thing as IRPF460.
$endgroup$
– Blair Fonville
1 hour ago




$begingroup$
Please edit your post to fix all the typos. And add a link to the datasheet - there’s no such thing as IRPF460.
$endgroup$
– Blair Fonville
1 hour ago












$begingroup$
Charging a capacitor like this will result in half of the charging energy being dissipated within the FET. There will be extremely large currents and energy dissipation that will destroy any reasonable size device. You need to either use an appropriate size series resistor that can handle the energy or better approaches use a series inductor and diode to recover that energy and put it back in the capacitor.
$endgroup$
– Kevin White
1 hour ago






$begingroup$
Charging a capacitor like this will result in half of the charging energy being dissipated within the FET. There will be extremely large currents and energy dissipation that will destroy any reasonable size device. You need to either use an appropriate size series resistor that can handle the energy or better approaches use a series inductor and diode to recover that energy and put it back in the capacitor.
$endgroup$
– Kevin White
1 hour ago












2 Answers
2






active

oldest

votes


















3












$begingroup$

Analysis



Cap Specs not given so a typical part

e.g. 1mF @600V ESR=92[mΩ] @ 10kHz 20°C using this Cap, Kemet ALC70(1)102FP600



FET RdsOn= 270 mΩ so out of 270+92 total The FET will draw 75% of the power and energy.



The cap Ec= 1/2CV² = 1/2 * 0.001F * 400²V = 80J so the cap will dissipate 20% or 20J while charging up to 80J. so the FET must transfer and dissipate 75% of 100J or 75J.



The worst case FET Safe Operating Area (SOA) must be observed.
enter image description here
Yet the FET can only handle about 900 mJ at 92uS but with RdsONC= 270mΩC=270us the SOA curve points to about 500 mJ vs a requirement to transfer to dissipate 75J.



So a much bigger FET is needed with lower RdsOn in the 10 mΩ range, I suspect. I doubt if the supply or Cap can handle a steady diet of these pulses, so back to the drawing board. The term "instantly" needs to be specified and relaxed with a current limiter.



Short Circuit current on the Cap is about 4000 Amps at 400 V.



"Houston, I think we have a problem"






share|improve this answer











$endgroup$





















    0












    $begingroup$

    @Sunnyskyguy-ee75 gives you a really good answer regarding the power problem. Ultimately, I believe you will need to consider the problem you are trying to solve. Either generate a lot of heat by charging the cap quickly with a high current (Warning caps will self heat, Al electrolytic in particular, and can be destroyed by too much current). Or increase the charging time and generate less heat.



    Maybe a non-linear solution is best.




    • Pulse the MOSFET (you'll need a catch diode for the parasitic
      inductance).

    • That this a little further and make a buck DC/DC converter by adding
      one inductor and diode to your circuit. A fixed duty cycle or fixed
      peak current are both simple switch control methods that will charge
      the cap. The high voltage is put across the inductor and not the FET. Bonus is that most power in the inductor goes to charge the cap too rather than being wasted as heat.


    Most power MOSFETs are designed to act as switches (in switching power converters for example). They can stand off the rated Vds when off. When turned on the NFET pulls its drain down to its source quickly, typically faster than 1 us.



    The power MOSFET is designed to be the lowest impedance looking into the node. In your situation the capacitor is the lowest (AC) impedance.



    There are MOSFETs called Linear FETs that are intended more for this type of operation. A linear FET has an expanded SOA, a lower gm, and typically a higher Ron than other similar switching power FETs. IXYS (now Littelfuse) has a selection here: N-Channel Linear Power MOSFETs.





    share









    $endgroup$













      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["\$", "\$"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("schematics", function () {
      StackExchange.schematics.init();
      });
      }, "cicuitlab");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "135"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: false,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: null,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });






      M.Brian is a new contributor. Be nice, and check out our Code of Conduct.










      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2felectronics.stackexchange.com%2fquestions%2f426781%2ffixing-conmutation-for-high-voltage-switching-with-power-mosfet%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      3












      $begingroup$

      Analysis



      Cap Specs not given so a typical part

      e.g. 1mF @600V ESR=92[mΩ] @ 10kHz 20°C using this Cap, Kemet ALC70(1)102FP600



      FET RdsOn= 270 mΩ so out of 270+92 total The FET will draw 75% of the power and energy.



      The cap Ec= 1/2CV² = 1/2 * 0.001F * 400²V = 80J so the cap will dissipate 20% or 20J while charging up to 80J. so the FET must transfer and dissipate 75% of 100J or 75J.



      The worst case FET Safe Operating Area (SOA) must be observed.
      enter image description here
      Yet the FET can only handle about 900 mJ at 92uS but with RdsONC= 270mΩC=270us the SOA curve points to about 500 mJ vs a requirement to transfer to dissipate 75J.



      So a much bigger FET is needed with lower RdsOn in the 10 mΩ range, I suspect. I doubt if the supply or Cap can handle a steady diet of these pulses, so back to the drawing board. The term "instantly" needs to be specified and relaxed with a current limiter.



      Short Circuit current on the Cap is about 4000 Amps at 400 V.



      "Houston, I think we have a problem"






      share|improve this answer











      $endgroup$


















        3












        $begingroup$

        Analysis



        Cap Specs not given so a typical part

        e.g. 1mF @600V ESR=92[mΩ] @ 10kHz 20°C using this Cap, Kemet ALC70(1)102FP600



        FET RdsOn= 270 mΩ so out of 270+92 total The FET will draw 75% of the power and energy.



        The cap Ec= 1/2CV² = 1/2 * 0.001F * 400²V = 80J so the cap will dissipate 20% or 20J while charging up to 80J. so the FET must transfer and dissipate 75% of 100J or 75J.



        The worst case FET Safe Operating Area (SOA) must be observed.
        enter image description here
        Yet the FET can only handle about 900 mJ at 92uS but with RdsONC= 270mΩC=270us the SOA curve points to about 500 mJ vs a requirement to transfer to dissipate 75J.



        So a much bigger FET is needed with lower RdsOn in the 10 mΩ range, I suspect. I doubt if the supply or Cap can handle a steady diet of these pulses, so back to the drawing board. The term "instantly" needs to be specified and relaxed with a current limiter.



        Short Circuit current on the Cap is about 4000 Amps at 400 V.



        "Houston, I think we have a problem"






        share|improve this answer











        $endgroup$
















          3












          3








          3





          $begingroup$

          Analysis



          Cap Specs not given so a typical part

          e.g. 1mF @600V ESR=92[mΩ] @ 10kHz 20°C using this Cap, Kemet ALC70(1)102FP600



          FET RdsOn= 270 mΩ so out of 270+92 total The FET will draw 75% of the power and energy.



          The cap Ec= 1/2CV² = 1/2 * 0.001F * 400²V = 80J so the cap will dissipate 20% or 20J while charging up to 80J. so the FET must transfer and dissipate 75% of 100J or 75J.



          The worst case FET Safe Operating Area (SOA) must be observed.
          enter image description here
          Yet the FET can only handle about 900 mJ at 92uS but with RdsONC= 270mΩC=270us the SOA curve points to about 500 mJ vs a requirement to transfer to dissipate 75J.



          So a much bigger FET is needed with lower RdsOn in the 10 mΩ range, I suspect. I doubt if the supply or Cap can handle a steady diet of these pulses, so back to the drawing board. The term "instantly" needs to be specified and relaxed with a current limiter.



          Short Circuit current on the Cap is about 4000 Amps at 400 V.



          "Houston, I think we have a problem"






          share|improve this answer











          $endgroup$



          Analysis



          Cap Specs not given so a typical part

          e.g. 1mF @600V ESR=92[mΩ] @ 10kHz 20°C using this Cap, Kemet ALC70(1)102FP600



          FET RdsOn= 270 mΩ so out of 270+92 total The FET will draw 75% of the power and energy.



          The cap Ec= 1/2CV² = 1/2 * 0.001F * 400²V = 80J so the cap will dissipate 20% or 20J while charging up to 80J. so the FET must transfer and dissipate 75% of 100J or 75J.



          The worst case FET Safe Operating Area (SOA) must be observed.
          enter image description here
          Yet the FET can only handle about 900 mJ at 92uS but with RdsONC= 270mΩC=270us the SOA curve points to about 500 mJ vs a requirement to transfer to dissipate 75J.



          So a much bigger FET is needed with lower RdsOn in the 10 mΩ range, I suspect. I doubt if the supply or Cap can handle a steady diet of these pulses, so back to the drawing board. The term "instantly" needs to be specified and relaxed with a current limiter.



          Short Circuit current on the Cap is about 4000 Amps at 400 V.



          "Houston, I think we have a problem"







          share|improve this answer














          share|improve this answer



          share|improve this answer








          edited 1 hour ago

























          answered 1 hour ago









          Sunnyskyguy EE75Sunnyskyguy EE75

          68.4k22598




          68.4k22598

























              0












              $begingroup$

              @Sunnyskyguy-ee75 gives you a really good answer regarding the power problem. Ultimately, I believe you will need to consider the problem you are trying to solve. Either generate a lot of heat by charging the cap quickly with a high current (Warning caps will self heat, Al electrolytic in particular, and can be destroyed by too much current). Or increase the charging time and generate less heat.



              Maybe a non-linear solution is best.




              • Pulse the MOSFET (you'll need a catch diode for the parasitic
                inductance).

              • That this a little further and make a buck DC/DC converter by adding
                one inductor and diode to your circuit. A fixed duty cycle or fixed
                peak current are both simple switch control methods that will charge
                the cap. The high voltage is put across the inductor and not the FET. Bonus is that most power in the inductor goes to charge the cap too rather than being wasted as heat.


              Most power MOSFETs are designed to act as switches (in switching power converters for example). They can stand off the rated Vds when off. When turned on the NFET pulls its drain down to its source quickly, typically faster than 1 us.



              The power MOSFET is designed to be the lowest impedance looking into the node. In your situation the capacitor is the lowest (AC) impedance.



              There are MOSFETs called Linear FETs that are intended more for this type of operation. A linear FET has an expanded SOA, a lower gm, and typically a higher Ron than other similar switching power FETs. IXYS (now Littelfuse) has a selection here: N-Channel Linear Power MOSFETs.





              share









              $endgroup$


















                0












                $begingroup$

                @Sunnyskyguy-ee75 gives you a really good answer regarding the power problem. Ultimately, I believe you will need to consider the problem you are trying to solve. Either generate a lot of heat by charging the cap quickly with a high current (Warning caps will self heat, Al electrolytic in particular, and can be destroyed by too much current). Or increase the charging time and generate less heat.



                Maybe a non-linear solution is best.




                • Pulse the MOSFET (you'll need a catch diode for the parasitic
                  inductance).

                • That this a little further and make a buck DC/DC converter by adding
                  one inductor and diode to your circuit. A fixed duty cycle or fixed
                  peak current are both simple switch control methods that will charge
                  the cap. The high voltage is put across the inductor and not the FET. Bonus is that most power in the inductor goes to charge the cap too rather than being wasted as heat.


                Most power MOSFETs are designed to act as switches (in switching power converters for example). They can stand off the rated Vds when off. When turned on the NFET pulls its drain down to its source quickly, typically faster than 1 us.



                The power MOSFET is designed to be the lowest impedance looking into the node. In your situation the capacitor is the lowest (AC) impedance.



                There are MOSFETs called Linear FETs that are intended more for this type of operation. A linear FET has an expanded SOA, a lower gm, and typically a higher Ron than other similar switching power FETs. IXYS (now Littelfuse) has a selection here: N-Channel Linear Power MOSFETs.





                share









                $endgroup$
















                  0












                  0








                  0





                  $begingroup$

                  @Sunnyskyguy-ee75 gives you a really good answer regarding the power problem. Ultimately, I believe you will need to consider the problem you are trying to solve. Either generate a lot of heat by charging the cap quickly with a high current (Warning caps will self heat, Al electrolytic in particular, and can be destroyed by too much current). Or increase the charging time and generate less heat.



                  Maybe a non-linear solution is best.




                  • Pulse the MOSFET (you'll need a catch diode for the parasitic
                    inductance).

                  • That this a little further and make a buck DC/DC converter by adding
                    one inductor and diode to your circuit. A fixed duty cycle or fixed
                    peak current are both simple switch control methods that will charge
                    the cap. The high voltage is put across the inductor and not the FET. Bonus is that most power in the inductor goes to charge the cap too rather than being wasted as heat.


                  Most power MOSFETs are designed to act as switches (in switching power converters for example). They can stand off the rated Vds when off. When turned on the NFET pulls its drain down to its source quickly, typically faster than 1 us.



                  The power MOSFET is designed to be the lowest impedance looking into the node. In your situation the capacitor is the lowest (AC) impedance.



                  There are MOSFETs called Linear FETs that are intended more for this type of operation. A linear FET has an expanded SOA, a lower gm, and typically a higher Ron than other similar switching power FETs. IXYS (now Littelfuse) has a selection here: N-Channel Linear Power MOSFETs.





                  share









                  $endgroup$



                  @Sunnyskyguy-ee75 gives you a really good answer regarding the power problem. Ultimately, I believe you will need to consider the problem you are trying to solve. Either generate a lot of heat by charging the cap quickly with a high current (Warning caps will self heat, Al electrolytic in particular, and can be destroyed by too much current). Or increase the charging time and generate less heat.



                  Maybe a non-linear solution is best.




                  • Pulse the MOSFET (you'll need a catch diode for the parasitic
                    inductance).

                  • That this a little further and make a buck DC/DC converter by adding
                    one inductor and diode to your circuit. A fixed duty cycle or fixed
                    peak current are both simple switch control methods that will charge
                    the cap. The high voltage is put across the inductor and not the FET. Bonus is that most power in the inductor goes to charge the cap too rather than being wasted as heat.


                  Most power MOSFETs are designed to act as switches (in switching power converters for example). They can stand off the rated Vds when off. When turned on the NFET pulls its drain down to its source quickly, typically faster than 1 us.



                  The power MOSFET is designed to be the lowest impedance looking into the node. In your situation the capacitor is the lowest (AC) impedance.



                  There are MOSFETs called Linear FETs that are intended more for this type of operation. A linear FET has an expanded SOA, a lower gm, and typically a higher Ron than other similar switching power FETs. IXYS (now Littelfuse) has a selection here: N-Channel Linear Power MOSFETs.






                  share











                  share


                  share










                  answered 4 mins ago









                  jherboldjherbold

                  813




                  813






















                      M.Brian is a new contributor. Be nice, and check out our Code of Conduct.










                      draft saved

                      draft discarded


















                      M.Brian is a new contributor. Be nice, and check out our Code of Conduct.













                      M.Brian is a new contributor. Be nice, and check out our Code of Conduct.












                      M.Brian is a new contributor. Be nice, and check out our Code of Conduct.
















                      Thanks for contributing an answer to Electrical Engineering Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2felectronics.stackexchange.com%2fquestions%2f426781%2ffixing-conmutation-for-high-voltage-switching-with-power-mosfet%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      SQL Server 17 - Attemping to backup to remote NAS but Access is denied

                      Always On Availability groups resolving state after failover - Remote harden of transaction...

                      Restoring from pg_dump with foreign key constraints