How do you determine if the following series converges?
$begingroup$
$$sum_{k=1}^infty mathrm{(1-frac{1}{k})}^{mathrm{k}^{2}}$$
I tried using the limit comparison test with $$sum_{k=1}^infty mathrm{(1-frac{1}{k})}^{mathrm{k}^{}}$$ but this leads to a limit of 0, which doesn't help. I think this may involve some use of
$mathrm{e}^x$, but I don't know where else to start. Any suggestions?
convergence
$endgroup$
add a comment |
$begingroup$
$$sum_{k=1}^infty mathrm{(1-frac{1}{k})}^{mathrm{k}^{2}}$$
I tried using the limit comparison test with $$sum_{k=1}^infty mathrm{(1-frac{1}{k})}^{mathrm{k}^{}}$$ but this leads to a limit of 0, which doesn't help. I think this may involve some use of
$mathrm{e}^x$, but I don't know where else to start. Any suggestions?
convergence
$endgroup$
$begingroup$
This is susceptible to the same approach as my answer to a different question.
$endgroup$
– T. Bongers
1 hour ago
$begingroup$
Do you know what $left(1-frac{1}{k}right)^{k}$ converges to?
$endgroup$
– JavaMan
1 hour ago
$begingroup$
I cannot believe how horrible my intuition is with this stuff especially given how old I am.
$endgroup$
– Randall
54 mins ago
add a comment |
$begingroup$
$$sum_{k=1}^infty mathrm{(1-frac{1}{k})}^{mathrm{k}^{2}}$$
I tried using the limit comparison test with $$sum_{k=1}^infty mathrm{(1-frac{1}{k})}^{mathrm{k}^{}}$$ but this leads to a limit of 0, which doesn't help. I think this may involve some use of
$mathrm{e}^x$, but I don't know where else to start. Any suggestions?
convergence
$endgroup$
$$sum_{k=1}^infty mathrm{(1-frac{1}{k})}^{mathrm{k}^{2}}$$
I tried using the limit comparison test with $$sum_{k=1}^infty mathrm{(1-frac{1}{k})}^{mathrm{k}^{}}$$ but this leads to a limit of 0, which doesn't help. I think this may involve some use of
$mathrm{e}^x$, but I don't know where else to start. Any suggestions?
convergence
convergence
asked 1 hour ago
JayJay
384
384
$begingroup$
This is susceptible to the same approach as my answer to a different question.
$endgroup$
– T. Bongers
1 hour ago
$begingroup$
Do you know what $left(1-frac{1}{k}right)^{k}$ converges to?
$endgroup$
– JavaMan
1 hour ago
$begingroup$
I cannot believe how horrible my intuition is with this stuff especially given how old I am.
$endgroup$
– Randall
54 mins ago
add a comment |
$begingroup$
This is susceptible to the same approach as my answer to a different question.
$endgroup$
– T. Bongers
1 hour ago
$begingroup$
Do you know what $left(1-frac{1}{k}right)^{k}$ converges to?
$endgroup$
– JavaMan
1 hour ago
$begingroup$
I cannot believe how horrible my intuition is with this stuff especially given how old I am.
$endgroup$
– Randall
54 mins ago
$begingroup$
This is susceptible to the same approach as my answer to a different question.
$endgroup$
– T. Bongers
1 hour ago
$begingroup$
This is susceptible to the same approach as my answer to a different question.
$endgroup$
– T. Bongers
1 hour ago
$begingroup$
Do you know what $left(1-frac{1}{k}right)^{k}$ converges to?
$endgroup$
– JavaMan
1 hour ago
$begingroup$
Do you know what $left(1-frac{1}{k}right)^{k}$ converges to?
$endgroup$
– JavaMan
1 hour ago
$begingroup$
I cannot believe how horrible my intuition is with this stuff especially given how old I am.
$endgroup$
– Randall
54 mins ago
$begingroup$
I cannot believe how horrible my intuition is with this stuff especially given how old I am.
$endgroup$
– Randall
54 mins ago
add a comment |
4 Answers
4
active
oldest
votes
$begingroup$
HINT:
Note that $$left( 1-frac1k right)^kle e^{-1}$$
Can you finish?
$endgroup$
add a comment |
$begingroup$
The root test works. Consider
$$lim sup sqrt[k]{left(1 - frac{1}{k}right)^{k^2}} = lim sup left(1 - frac{1}{k}right)^k = e^{-1} < 1,$$
hence the series converges.
$endgroup$
add a comment |
$begingroup$
$begin{array}\
(1-frac1{k})^{k^2}
&=(frac{k-1}{k})^{k^2}\
&=dfrac1{(frac{k}{k-1})^{k^2}}\
&=dfrac1{(1+frac{1}{k-1})^{k^2}}\
&=dfrac1{((1+frac{1}{k-1})^{k})^k}\
&<dfrac1{(1+frac{k}{k-1})^k}
qquadtext{by Bernoulli}\
&=dfrac1{(frac{2k-1}{k-1})^k}\
&<dfrac1{(frac{2k-2}{k-1})^k}\
&=dfrac1{2^k}\
end{array}
$
and the sum of this converges.
$endgroup$
add a comment |
$begingroup$
The ratio test is also interesting
$$a_k=left(1-frac{1}{k}right)^{k^2}implies log(a_k)=k ^2 logleft(1-frac{1}{k}right)$$
$$log(a_{k+1})-log(a_k)=(k+1) ^2 logleft(1-frac{1}{k+1}right)-k ^2 logleft(1-frac{1}{k}right)$$
Develop as a Taylor series for large values of $k$ to get
$$log(a_{k+1})-log(a_k)=-1+frac{1}{3 k^2}+O(left(frac{1}{k^3}right)$$
Continue with Taylor
$$frac{a_{k+1}}{a_k}=e^{log(a_{k+1})-log(a_k)}=frac 1 eleft(1+frac{1}{3 k^2}+Oleft(frac{1}{k^3}right)right)to frac 1 e$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3123320%2fhow-do-you-determine-if-the-following-series-converges%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
HINT:
Note that $$left( 1-frac1k right)^kle e^{-1}$$
Can you finish?
$endgroup$
add a comment |
$begingroup$
HINT:
Note that $$left( 1-frac1k right)^kle e^{-1}$$
Can you finish?
$endgroup$
add a comment |
$begingroup$
HINT:
Note that $$left( 1-frac1k right)^kle e^{-1}$$
Can you finish?
$endgroup$
HINT:
Note that $$left( 1-frac1k right)^kle e^{-1}$$
Can you finish?
answered 1 hour ago
Mark ViolaMark Viola
132k1277174
132k1277174
add a comment |
add a comment |
$begingroup$
The root test works. Consider
$$lim sup sqrt[k]{left(1 - frac{1}{k}right)^{k^2}} = lim sup left(1 - frac{1}{k}right)^k = e^{-1} < 1,$$
hence the series converges.
$endgroup$
add a comment |
$begingroup$
The root test works. Consider
$$lim sup sqrt[k]{left(1 - frac{1}{k}right)^{k^2}} = lim sup left(1 - frac{1}{k}right)^k = e^{-1} < 1,$$
hence the series converges.
$endgroup$
add a comment |
$begingroup$
The root test works. Consider
$$lim sup sqrt[k]{left(1 - frac{1}{k}right)^{k^2}} = lim sup left(1 - frac{1}{k}right)^k = e^{-1} < 1,$$
hence the series converges.
$endgroup$
The root test works. Consider
$$lim sup sqrt[k]{left(1 - frac{1}{k}right)^{k^2}} = lim sup left(1 - frac{1}{k}right)^k = e^{-1} < 1,$$
hence the series converges.
answered 1 hour ago
Theo BenditTheo Bendit
18.8k12253
18.8k12253
add a comment |
add a comment |
$begingroup$
$begin{array}\
(1-frac1{k})^{k^2}
&=(frac{k-1}{k})^{k^2}\
&=dfrac1{(frac{k}{k-1})^{k^2}}\
&=dfrac1{(1+frac{1}{k-1})^{k^2}}\
&=dfrac1{((1+frac{1}{k-1})^{k})^k}\
&<dfrac1{(1+frac{k}{k-1})^k}
qquadtext{by Bernoulli}\
&=dfrac1{(frac{2k-1}{k-1})^k}\
&<dfrac1{(frac{2k-2}{k-1})^k}\
&=dfrac1{2^k}\
end{array}
$
and the sum of this converges.
$endgroup$
add a comment |
$begingroup$
$begin{array}\
(1-frac1{k})^{k^2}
&=(frac{k-1}{k})^{k^2}\
&=dfrac1{(frac{k}{k-1})^{k^2}}\
&=dfrac1{(1+frac{1}{k-1})^{k^2}}\
&=dfrac1{((1+frac{1}{k-1})^{k})^k}\
&<dfrac1{(1+frac{k}{k-1})^k}
qquadtext{by Bernoulli}\
&=dfrac1{(frac{2k-1}{k-1})^k}\
&<dfrac1{(frac{2k-2}{k-1})^k}\
&=dfrac1{2^k}\
end{array}
$
and the sum of this converges.
$endgroup$
add a comment |
$begingroup$
$begin{array}\
(1-frac1{k})^{k^2}
&=(frac{k-1}{k})^{k^2}\
&=dfrac1{(frac{k}{k-1})^{k^2}}\
&=dfrac1{(1+frac{1}{k-1})^{k^2}}\
&=dfrac1{((1+frac{1}{k-1})^{k})^k}\
&<dfrac1{(1+frac{k}{k-1})^k}
qquadtext{by Bernoulli}\
&=dfrac1{(frac{2k-1}{k-1})^k}\
&<dfrac1{(frac{2k-2}{k-1})^k}\
&=dfrac1{2^k}\
end{array}
$
and the sum of this converges.
$endgroup$
$begin{array}\
(1-frac1{k})^{k^2}
&=(frac{k-1}{k})^{k^2}\
&=dfrac1{(frac{k}{k-1})^{k^2}}\
&=dfrac1{(1+frac{1}{k-1})^{k^2}}\
&=dfrac1{((1+frac{1}{k-1})^{k})^k}\
&<dfrac1{(1+frac{k}{k-1})^k}
qquadtext{by Bernoulli}\
&=dfrac1{(frac{2k-1}{k-1})^k}\
&<dfrac1{(frac{2k-2}{k-1})^k}\
&=dfrac1{2^k}\
end{array}
$
and the sum of this converges.
answered 1 hour ago
marty cohenmarty cohen
73.8k549128
73.8k549128
add a comment |
add a comment |
$begingroup$
The ratio test is also interesting
$$a_k=left(1-frac{1}{k}right)^{k^2}implies log(a_k)=k ^2 logleft(1-frac{1}{k}right)$$
$$log(a_{k+1})-log(a_k)=(k+1) ^2 logleft(1-frac{1}{k+1}right)-k ^2 logleft(1-frac{1}{k}right)$$
Develop as a Taylor series for large values of $k$ to get
$$log(a_{k+1})-log(a_k)=-1+frac{1}{3 k^2}+O(left(frac{1}{k^3}right)$$
Continue with Taylor
$$frac{a_{k+1}}{a_k}=e^{log(a_{k+1})-log(a_k)}=frac 1 eleft(1+frac{1}{3 k^2}+Oleft(frac{1}{k^3}right)right)to frac 1 e$$
$endgroup$
add a comment |
$begingroup$
The ratio test is also interesting
$$a_k=left(1-frac{1}{k}right)^{k^2}implies log(a_k)=k ^2 logleft(1-frac{1}{k}right)$$
$$log(a_{k+1})-log(a_k)=(k+1) ^2 logleft(1-frac{1}{k+1}right)-k ^2 logleft(1-frac{1}{k}right)$$
Develop as a Taylor series for large values of $k$ to get
$$log(a_{k+1})-log(a_k)=-1+frac{1}{3 k^2}+O(left(frac{1}{k^3}right)$$
Continue with Taylor
$$frac{a_{k+1}}{a_k}=e^{log(a_{k+1})-log(a_k)}=frac 1 eleft(1+frac{1}{3 k^2}+Oleft(frac{1}{k^3}right)right)to frac 1 e$$
$endgroup$
add a comment |
$begingroup$
The ratio test is also interesting
$$a_k=left(1-frac{1}{k}right)^{k^2}implies log(a_k)=k ^2 logleft(1-frac{1}{k}right)$$
$$log(a_{k+1})-log(a_k)=(k+1) ^2 logleft(1-frac{1}{k+1}right)-k ^2 logleft(1-frac{1}{k}right)$$
Develop as a Taylor series for large values of $k$ to get
$$log(a_{k+1})-log(a_k)=-1+frac{1}{3 k^2}+O(left(frac{1}{k^3}right)$$
Continue with Taylor
$$frac{a_{k+1}}{a_k}=e^{log(a_{k+1})-log(a_k)}=frac 1 eleft(1+frac{1}{3 k^2}+Oleft(frac{1}{k^3}right)right)to frac 1 e$$
$endgroup$
The ratio test is also interesting
$$a_k=left(1-frac{1}{k}right)^{k^2}implies log(a_k)=k ^2 logleft(1-frac{1}{k}right)$$
$$log(a_{k+1})-log(a_k)=(k+1) ^2 logleft(1-frac{1}{k+1}right)-k ^2 logleft(1-frac{1}{k}right)$$
Develop as a Taylor series for large values of $k$ to get
$$log(a_{k+1})-log(a_k)=-1+frac{1}{3 k^2}+O(left(frac{1}{k^3}right)$$
Continue with Taylor
$$frac{a_{k+1}}{a_k}=e^{log(a_{k+1})-log(a_k)}=frac 1 eleft(1+frac{1}{3 k^2}+Oleft(frac{1}{k^3}right)right)to frac 1 e$$
answered 1 hour ago
Claude LeiboviciClaude Leibovici
122k1157134
122k1157134
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3123320%2fhow-do-you-determine-if-the-following-series-converges%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
This is susceptible to the same approach as my answer to a different question.
$endgroup$
– T. Bongers
1 hour ago
$begingroup$
Do you know what $left(1-frac{1}{k}right)^{k}$ converges to?
$endgroup$
– JavaMan
1 hour ago
$begingroup$
I cannot believe how horrible my intuition is with this stuff especially given how old I am.
$endgroup$
– Randall
54 mins ago