Taylor series of product of two functions












4












$begingroup$


let $f$ and $g$ be infinitley differentiable functions and $a_k = frac{f^{(k)}(a)}{k!}$ and $b_e = frac{g^{(e)}(a)}{e!}$ be cofficients of Taylor Polynomial at $a$ then what would be the coefficients of $fg$.



rather than asking my specific question I asked this general question so other can benefit too



So I think we would need to multiply the two polynomials but that's just my intuition and I don't know how to justify it and I don't think it would be as simple.










share|cite|improve this question











$endgroup$












  • $begingroup$
    Is it supposed to be $b_e=frac{g^{(e)}(a)}{e!}$ ? If so, look up the Cauchy Product Formula.
    $endgroup$
    – robjohn
    3 hours ago


















4












$begingroup$


let $f$ and $g$ be infinitley differentiable functions and $a_k = frac{f^{(k)}(a)}{k!}$ and $b_e = frac{g^{(e)}(a)}{e!}$ be cofficients of Taylor Polynomial at $a$ then what would be the coefficients of $fg$.



rather than asking my specific question I asked this general question so other can benefit too



So I think we would need to multiply the two polynomials but that's just my intuition and I don't know how to justify it and I don't think it would be as simple.










share|cite|improve this question











$endgroup$












  • $begingroup$
    Is it supposed to be $b_e=frac{g^{(e)}(a)}{e!}$ ? If so, look up the Cauchy Product Formula.
    $endgroup$
    – robjohn
    3 hours ago
















4












4








4


1



$begingroup$


let $f$ and $g$ be infinitley differentiable functions and $a_k = frac{f^{(k)}(a)}{k!}$ and $b_e = frac{g^{(e)}(a)}{e!}$ be cofficients of Taylor Polynomial at $a$ then what would be the coefficients of $fg$.



rather than asking my specific question I asked this general question so other can benefit too



So I think we would need to multiply the two polynomials but that's just my intuition and I don't know how to justify it and I don't think it would be as simple.










share|cite|improve this question











$endgroup$




let $f$ and $g$ be infinitley differentiable functions and $a_k = frac{f^{(k)}(a)}{k!}$ and $b_e = frac{g^{(e)}(a)}{e!}$ be cofficients of Taylor Polynomial at $a$ then what would be the coefficients of $fg$.



rather than asking my specific question I asked this general question so other can benefit too



So I think we would need to multiply the two polynomials but that's just my intuition and I don't know how to justify it and I don't think it would be as simple.







analysis taylor-expansion






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 3 hours ago







Conor

















asked 4 hours ago









ConorConor

556




556












  • $begingroup$
    Is it supposed to be $b_e=frac{g^{(e)}(a)}{e!}$ ? If so, look up the Cauchy Product Formula.
    $endgroup$
    – robjohn
    3 hours ago




















  • $begingroup$
    Is it supposed to be $b_e=frac{g^{(e)}(a)}{e!}$ ? If so, look up the Cauchy Product Formula.
    $endgroup$
    – robjohn
    3 hours ago


















$begingroup$
Is it supposed to be $b_e=frac{g^{(e)}(a)}{e!}$ ? If so, look up the Cauchy Product Formula.
$endgroup$
– robjohn
3 hours ago






$begingroup$
Is it supposed to be $b_e=frac{g^{(e)}(a)}{e!}$ ? If so, look up the Cauchy Product Formula.
$endgroup$
– robjohn
3 hours ago












1 Answer
1






active

oldest

votes


















4












$begingroup$

Your intuition is good.



Multiplying the series gives an n-th term coefficient of



$$c_n = a_0b_n + a_1b_{n-1} + dots + a_{n-1}b_1 + a_nb_0= sum_{i=0}^n a_i b_{n-i}$$



which is the same as doing the Taylor series of $fg$ the long way, since



$$c_n = frac{(fg)^{(n)}(a)}{n!} = frac{sum_{i=0}^n binom{n}{i}f^{(i)}(a)g^{(n-i)}(a)}{n!} = sum_{i=0}^n frac{f^{(i)}(a)}{i!} frac{g^{(n-i)}(a)}{(n-i)!} = sum_{i=0}^n a_i b_{n-i}$$






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3162570%2ftaylor-series-of-product-of-two-functions%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    4












    $begingroup$

    Your intuition is good.



    Multiplying the series gives an n-th term coefficient of



    $$c_n = a_0b_n + a_1b_{n-1} + dots + a_{n-1}b_1 + a_nb_0= sum_{i=0}^n a_i b_{n-i}$$



    which is the same as doing the Taylor series of $fg$ the long way, since



    $$c_n = frac{(fg)^{(n)}(a)}{n!} = frac{sum_{i=0}^n binom{n}{i}f^{(i)}(a)g^{(n-i)}(a)}{n!} = sum_{i=0}^n frac{f^{(i)}(a)}{i!} frac{g^{(n-i)}(a)}{(n-i)!} = sum_{i=0}^n a_i b_{n-i}$$






    share|cite|improve this answer









    $endgroup$


















      4












      $begingroup$

      Your intuition is good.



      Multiplying the series gives an n-th term coefficient of



      $$c_n = a_0b_n + a_1b_{n-1} + dots + a_{n-1}b_1 + a_nb_0= sum_{i=0}^n a_i b_{n-i}$$



      which is the same as doing the Taylor series of $fg$ the long way, since



      $$c_n = frac{(fg)^{(n)}(a)}{n!} = frac{sum_{i=0}^n binom{n}{i}f^{(i)}(a)g^{(n-i)}(a)}{n!} = sum_{i=0}^n frac{f^{(i)}(a)}{i!} frac{g^{(n-i)}(a)}{(n-i)!} = sum_{i=0}^n a_i b_{n-i}$$






      share|cite|improve this answer









      $endgroup$
















        4












        4








        4





        $begingroup$

        Your intuition is good.



        Multiplying the series gives an n-th term coefficient of



        $$c_n = a_0b_n + a_1b_{n-1} + dots + a_{n-1}b_1 + a_nb_0= sum_{i=0}^n a_i b_{n-i}$$



        which is the same as doing the Taylor series of $fg$ the long way, since



        $$c_n = frac{(fg)^{(n)}(a)}{n!} = frac{sum_{i=0}^n binom{n}{i}f^{(i)}(a)g^{(n-i)}(a)}{n!} = sum_{i=0}^n frac{f^{(i)}(a)}{i!} frac{g^{(n-i)}(a)}{(n-i)!} = sum_{i=0}^n a_i b_{n-i}$$






        share|cite|improve this answer









        $endgroup$



        Your intuition is good.



        Multiplying the series gives an n-th term coefficient of



        $$c_n = a_0b_n + a_1b_{n-1} + dots + a_{n-1}b_1 + a_nb_0= sum_{i=0}^n a_i b_{n-i}$$



        which is the same as doing the Taylor series of $fg$ the long way, since



        $$c_n = frac{(fg)^{(n)}(a)}{n!} = frac{sum_{i=0}^n binom{n}{i}f^{(i)}(a)g^{(n-i)}(a)}{n!} = sum_{i=0}^n frac{f^{(i)}(a)}{i!} frac{g^{(n-i)}(a)}{(n-i)!} = sum_{i=0}^n a_i b_{n-i}$$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered 4 hours ago









        Michael BiroMichael Biro

        11.3k21831




        11.3k21831






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3162570%2ftaylor-series-of-product-of-two-functions%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            SQL Server 17 - Attemping to backup to remote NAS but Access is denied

            Always On Availability groups resolving state after failover - Remote harden of transaction...

            Restoring from pg_dump with foreign key constraints